A phase-field model for articular cartilage regeneration in degradable scaffolds.

نویسندگان

  • Ana Yun
  • Soon-Hyuck Lee
  • Junseok Kim
چکیده

Degradable scaffolds represent a promising solution for tissue engineering of damaged or degenerated articular cartilage which due to its avascular nature, is characterized by a low self-repair capacity. To estimate the articular cartilage regeneration process employing degradable scaffolds, we propose a mathematical model as the extension of Olson and Haider's work (Int. J. Pure Appl. Math. 53:333-353, 2009). The simulated tissue engineering procedure consists in (i) the explant of a cylindrical sample, (ii) the removal of the inner core region, and (iii) the filling of the inner region with hydrogels, degradable scaffolds enriched with nutrients, such as oxygen and glucose. The phase-field model simulates the cartilage regeneration process at the scaffold-cartilage interface. It embeds reaction-diffusion equations, which are used to model the nutrient and regenerated extracellular matrix. The equations are solved using an unconditionally stable hybrid numerical scheme. Cartilage repair processes with full-thickness defects, which are controlled by properties of hydrogel materials and cartilage explant culture based on biological interest are observed. The implemented mathematical model shows the capability to simulate cartilage repairing processes, which can be virtually controlled evaluating hydrogel and cartilage material properties including nutrient supply and defected magnitude. In particular, the adopted methodology is able to explain the regeneration time of cartilage within hydrogel environments. With the numerical scheme, the numerical simulations are demonstrated for the potential improvement of hydrogel structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.

Healing articular cartilage remains a significant clinical challenge because of its limited self-healing capacity. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with scaffolds that capture aspects of native tissue and promote cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with en...

متن کامل

Comparing Behavior of Chondrocyte Cells on Different Polyhydroxybutyrate Scaffold Structure for Cartilage Tissue Engineering

Introduction: As the ability to repair cartilage tissue in body is limited, finding a suitable method for cartilage regeneration has gained the attention of many scholars. For this purpose, scaffold structure and morphology, along with cell culture on it, can be a novel method to treat cartilage injuries, osteoarthritis. Methods: In this study, polyhydroxybutyrate (PHB) is selected as the scaf...

متن کامل

The Effect of 3D Nanofibrous Scaffolds on the Chondrogenesis of Induced Pluripotent Stem Cells and Their Application in Restoration of Cartilage Defects

The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3...

متن کامل

Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels

BACKGROUND Injuries to the human native cartilage tissue are particularly problematic because cartilage has little to no ability to heal or regenerate itself. Employing a tissue engineering strategy that combines suitable cell sources and biomimetic hydrogels could be a promising alternative to achieve cartilage regeneration. However, the weak mechanical properties may be the major drawback to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 75 12  شماره 

صفحات  -

تاریخ انتشار 2013